
Representation Learning for Drum Loops with a
Variational Autoencoder

James McDermott1

University College Dublin
james.mcdermott2@ucd.ie

Abstract. A representation is learned for MIDI drum loops, using a
variational autoencoder. The aim is to create a representation which will
be useful as a component in human-computer interfaces and in music
generation systems. A large library of MIDI drum loops is described and
used to train an autoencoder neural network in an unsupervised fashion.
The result is a low-dimension representation which captures essential
dimensions of variation in the data, and can be used to generate new
drum loops and interpolate between pairs of loops.

Keywords: Representation learning; neural networks; variational au-
toencoder; music; drums; drum loops; MIDI

1 Introduction

Many digital musical instruments are controlled by a large number of numerical
parameters. Choosing a timbre for a synthesizer, for example, amounts to a
search problem in a space consisting of one dimension per parameter. Geometric
operations such as tweaking a single timbre, blending between a pair of timbres,
and following a trajectory are possible in this space. These operations are valuable
as a means of control both for novice and expert users (“I’ll try a variation of the
current sound”), and as a means of communication between users (“can you push
that sound a bit farther?”). They also enable alternative methods of control such
as random generation of novel timbres, and interactive search methods such as
interactive evolutionary computation. Moreover, similar geometric ideas are seen
as a core achievement of recent work on learned representations, which become
components in machine learning algorithms: a well-known example is the “king
- man + woman = queen” vector algebra of Mikolov et al. [14].

In contrast to control of synthesized timbre, editing music using a sequencer
equates to manual control of a large number of note-on/note-off, velocity, and
pitch parameters, arranged into a time-grid. Although geometric operations can
be defined in such a space, in practice the results fail to give a meaningful sense
of tweaking, blending, or trajectory. What is needed is a new representation, that
is an alternative space together with a mapping from that space to the concrete
musical data, such that these geometric operations become meaningful for users
and usable in algorithms.

2 James McDermott

In this paper, an autoencoder neural network architecture is proposed for the
problem of learning representations suitable for the control of drum sequencers.
The representation is learned from a corpus of drum loops in MIDI format. The
neural network is a variational autoencoder (VAE) [12]. The VAE has several
properties which may make it suitable for the task, as follows. (1) An autoencoder
(AE) [9] learns from a corpus of data with no requirement for labels, because it
is trained to reproduce its input at the output. (2) The middle hidden layer of
the AE is usually much smaller (fewer neurons) than the input, forcing the AE
to find regularities in the data and take advantage of them. Such regularities
amount to an implicit sense of “what tracks in the corpus are like”. (3) By
discarding the input half of the AE, and working in the space of the real-valued
variables of the hidden layer, we obtain a new representation. Running the AE
forward from the hidden layer gives a new drum sequence. (4) The VAE allows
tight control of the distribution of data in the hidden layer, when mapped from
the input, in contrast to other AEs [12].

Moreover, it is hypothesized that geometric operations on the hidden layer
variables tend to map to geometric operations as heard by listeners, such as
well-formed variations of an object (formed by a small change from a point
in the hidden layer space) or a conceptual blend or interpolation (formed by
an interpolation between a pair of points in the hidden layer space). A well-
behaved distribution at the hidden layer allows the user to explore and use
geometric operations freely and helps to prevent poor results in areas of the new
representation which are of low density with respect to the training data.

AEs and variants have been used for some similar tasks in the domain of
image processing and computer vision, and to some extent for audio processing,
but have been much less used in the domain of musical control and at the MIDI
level. In this paper we investigate VAE performance (success in the input-output
reproduction task) on a corpus of MIDI drum tracks, investigate the influence of
VAE hyperparameters, and demonstrate the distribution achieved in the hidden
layer. Finally, we audition the results of random generation, tweaking, blending,
and trajectories in the learned representation.

2 Problem Definition

We are concerned with short drum loops represented at the symbolic level, e.g. at
the MIDI level, rather than raw audio. As we will see, this task is sufficiently
large to be interesting and challenging, and as discussed above, also has use-
ful applications in novel user interfaces. It is natural to consider the symbolic
level, since the computational cost will be far lower; the features present at the
symbolic level are somewhat semantic, in comparison to those at the raw audio
level (but still, far less semantic than those we would like to learn in a new
representation); and good symbolic corpora are now available.

In our problem, we are given a space in which drum loops can exist. Under
some simplifying assumptions (see Section 5), any drum loop corresponds to a
point in this space, and any point in the space corresponds to a drum loop.

Representation Learning for Drum Loops with a Variational Autoencoder 3

However, the vast majority of points in the space will correspond to “ill-formed”
drum loops, effectively sounding like random drum hits, rather than sounding
musical. Of course, some proportion will also exist in a grey area which may
be called semi-musical, depending on context and taste. The space is also high-
dimensional. Moreover, as already discussed, several operations in the space of
drum loops which might be useful to musicians or algorithms turn out not to work
well, such as random generation, tweaking, blending, or following trajectories.

A representation, in our context, will mean a space, together with a mapping
from it to the original space. (As a special case, the original space is itself a rep-
resentation by this definition.) The new space corresponds to a low-dimensional
manifold embedded in the original space. In the context of neural representation
learning, the new space is often referred to as the latent space, and points in
the new space as latent codes. Introducing a second space is motivated by the
possibility that it will have better properties than the original. Ideally, we would
like to have a lower-dimensional representation, in which geometric operations
correspond to some extent to human understanding of these operations: for ex-
ample, the “blend” of two drum loops should correspond to a stylistic conceptual
blend [10], rather than a mere cross-fade. Also, for practical reasons we would
like to have a representation in which the mapping to the original drum loop
space can run in real-time.

Such a representation would be useful as a component in human-computer
interfaces: for example, we could allow a user to explore the space of drum loops
by moving sliders on a synthesizer-style interface. It would also be useful in
algorithms: for example, metaheuristic search could proceed more successfully
when geometric operations, which are based on geometric concepts [15] give
appropriate results.

3 Related Work

There are several possible approaches to creating a good representation:

– Standard dimensionality-reduction algorithms such as principal components
analysis (PCA), multi-dimensional scaling (MDS), and t-distributed stochas-
tic neighbour embedding (t-SNE);

– Manual design;
– Representations learned from data using neural networks and similar ap-

proaches.

Algorithms such as MDS and t-SNE do allow a dataset to be embedded into
a new, lower-dimensional space, preserving distances between pairs of points.
Mathematical results are available concerning the worst-case distortion suffered
by such embeddings, e.g. [2]. However, these methods do not allow new points
to be mapped to the new space, and do not allow a mapping from the new space
to the original. Thus, they do not serve as representations for our purposes.

Principal components analysis (PCA) is a well-known linear method for rep-
resentation learning. It works by creating a new space by rotating the original

4 James McDermott

(an invertible linear transformation achieved by a matrix multiplication), such
that the first of the new axes is maximally aligned with variation in the data, the
second with remaining variation, and so on, and then discarding those axes which
contribute the least. Thus, it achieves dimensionality reduction. A point sampled
in the low-dimensional space can be mapped (by a single matrix multiplication,
hence quickly) to a point in the original space. Therefore, PCA qualifies as a
method of representation learning.

Manual design of good representations is a mainstay of research in meta-
heuristics and other fields [16]. In the context of evolutionary computation and
search, the original space is referred to as the “phenotype” space, and the new
representation space is referred to as the “genotype” space. Metaheuristic algo-
rithms search in the genotype space, running their mappings forward to create
points in the original space for evaluation by an objective function. Creating a
suitable representation for drum loops by manual methods would be possible,
and an interesting project, but would necessarily rely on human ingenuity and
domain knowledge, and would be vulnerable to the creator’s biases.

Therefore, we focus instead on learning a representation from data. We next
consider related work in two categories: neural networks applied to representation
learning, and various techniques applied to learning and representations for drum
patterns.

3.1 Representation learning with neural networks

In this paper we will consider representation learning: that is, defining a space
and using data to learn a mapping from it to the original space. The desired
geometric properties may either be encouraged by the learning process, or may
emerge naturally. Since the goal is just to learn a mapping, there is no require-
ment for labelled data, hence the process is unsupervised.

In recent years, the field of representation learning has made great progress
through novel neural network architectures. In particular, variational autoen-
coders (VAEs) [12] and generative adversarial networks (GANs) [7] and their
many variants represent the state of the art. Each uses an interesting neural
architecture and method of training on unlabelled data. Each has been used ex-
tensively in learning good representations for image corpora. As an example, on
the well-known MNIST dataset, consisting of images of handwritten digits, both
VAEs and GANs have been shown to be capable of learning a representation
in which random points in the new space correspond to well-formed digits; and
interpolations from one point to another in the new space correspond to good
interpolations between digits in the image space. Further developments of the
two basic models have improved on training stability and on the behaviour of
the learned representation. In the current paper, we consider the VAE, since it
is the model on which much of the recent work has been based. Future work will
investigate GANs and alternative VAE models, as discussed in Section 7.1.

Representation Learning for Drum Loops with a Variational Autoencoder 5

3.2 Representations for drums and music

As discussed, good progress has been made using neural network approaches
to representation learning in recent years. Many of the applications are in the
domain of image processing and computer vision, and to a lesser extent in audio
processing [21] and music at the audio (sample) level [6]. Of more interest in
the current contxt is recent research in representation learning at the symbolic
(MIDI) level.

The Google Magenta project has released several models for representation
learning and generation of both drums and melodic material, using VAEs and
recurrent neural networks (RNNs)1. The multitrack MusicVAE model [18] allows
for multiple musical instruments playing simultaneously, together with drums. It
operates at the symbolic level and is trained using MIDI data. It combines a VAE
and an RNN. The authors emphasise the ability to carry out interpolations and
meaningful transformations in the latent space, such as increasing the overall
pitch range. They can also “condition” on chords, that is rather than asking the
network to generate material from scratch, a chord sequence can be input and
the network is then required to generate suitable material.

Several other authors have also used recurrent networks, including Trieu and
Keller [20], who used a generative adversarial network (GAN) to improvise jazz,
and Sturm [19] who used an RNN for folk music and added deep analysis of
its inner workings. Meanwhile, Manzelli et al. [13] combined both audio and
symbolic representations.

Kaliakatsos-Papakostas [10] has described an interesting project in which
high-level features of drum loops are manually defined and used as a type of
representation. The features are “one-way”: they can be extracted from drum
loops, but there is no immediate way to generate a drum loop given a feature
vector. However, a metaheuristic search method is proposed to search for loops
whose features closely match those of a desired feature vector. This allows the
features to function as a representation, and allows “conceptual blending” (the
focus of the paper) and other tasks such as tweaking and interpolation. However,
because of the metaheuristic search, the mapping from features to drum loops
cannot run in real-time, an important drawback both for interactive use and
for algorithms. Kaliakatsos-Papakostas defined a space of 32 features, which is
comparable in size to that developed in the current paper.

Eigenfeldt and Pasquier [5] describe a system for the creation of electronic
dance music, including drum beats. Concerning drum tracks, they defined a set
of “one-way” features. Again, they used a search method to find loops corre-
sponding to desired feature vectors. It is of interest that they define exactly 3
features for drum beats – named density, syncopation, and symmetry – each
applied at 3 levels – the open/closed hi-hat, the kick and snare, and both to-
gether. Since they use just 4 drum types and eight-bar phrases, the “size” of
their representation (9 features) is not inconsistent with that developed in the
current paper.

1 E.g. https://github.com/tensorflow/magenta/tree/master/magenta/models/

drums_rnn

6 James McDermott

Based on our literature review, it is clear that recurrent neural architectures
are common. They are a natural choice because, like language, music is essentially
sequential, and recurrent architectures have a “memory”. However, the short
drum loops we consider may have less need for memory. Dependencies between
the information at different time-steps in the loop can be sufficiently captured
by a relatively small feed-forward network. Also, drum loops have a particular
“timeless” quality: rather than a sequential journey from beginning to end, a
drum loop is “constant”. In this work, we have chosen to focus on feed-forward
networks only.

We also do not consider convolutional neural networks (CNNs) in this paper.
CNNs have been central to many successes of deep learning with image data in
recent years. They are particularly suitable for image data because the assump-
tion they effectively encode is that there is a strong relationship between the
information in adjacent pixels, arising from their assumed physical proximity in
the scene depicted by the image.

In the drum loop case, this assumption is more problematic. There is cer-
tainly a relationship between vertically-adjacent values in a drum loop: they are
different types of drum playing at the same time. However, there is no real sense
that one pair of drum types is “more adjacent” than another. Thus a typical con-
volution kernel would be inappropriate. Similarly, horizontally-adjacent values
are sequential in time, and so are in a relationship, but the relationship between
lagged values (e.g. the values 4 beats apart, in a 4/4 time signature) may be
much more significant. So, again, a typical image-processing kernel will be inap-
propriate. Possibilities arise here for future work, to be discussed in Section 7.1.
In the current paper, we consider fully-connected networks only. This can be
hypothesized to be sufficient, if inefficient: a fully-connected layer can learn any
mapping that can be learned by a convolutional layer, at the cost of inefficiency
in time and training data.

4 Proposed Model

We propose to use a standard VAE model for this representation learning task.
It is a bottleneck architecture, where the input is passed through an encoder to
a narrow middle layer, to be then passed through a decoder to the output, which
is of the same size and shape as the input, with the goal of reconstructing the
input at the output.

The main difference between a typical bottleneck autoencoder (AE) and a
VAE is a complexity in the hidden layer. The encoder takes a drum loop as
input, and outputs a pair of vectors representing the mean and variance of its
latent code. The decoder takes as input samples from a Gaussian distribution
with the given mean and variance, and outputs a drum loop. The purpose of this
complexity is that it allows tight control over the distribution of latent codes.
This is desirable because it allows us to sample from a Gaussian distribution
in the latent space with confidence that the decoder has previously succesfully
decoded similar points to well-formed drum loops. Without this control, the

Representation Learning for Drum Loops with a Variational Autoencoder 7

danger would be that a point sampled at the hidden layer was left “unused” by
the network, and so would lead to a malformed result.

The details of the architecture are illustrated in Fig. 1.

t
1 2 3 64

BD

SD

OH

CR

Input

h t
1 2 3 64

BD

SD

OH

CR

ReLU

Output

z

z

ReLU

Linear

Linear

Sigmoid

 z h

DecoderEncoder

Fig. 1. VAE architecture. The input to the decoder is of size (9 x 64), a direct repre-
sentation of a drum loop. In the encoder, the layers are a fully-connected layer with
ReLU activation and output of size h, and then a pair of parallel fully-connected layers
leading to the variational outputs µ and σ, each of size z. In the decoder, the input
is a vector of size z, and the layers are a fully-connected layer with ReLU activation
and output of size h, followed by a fully-connected layer with sigmoid activation with
output of size (9 x 64).

In this paper, we choose h = 400 and z = 20 based on preliminary exper-
iments. Larger values tend not to improve the final loss, as demonstrated in
Section 6.3. The model is trained with the Adam optimizer [11] for 300 epochs.
Again, preliminary experiments were used to check that this number was suffi-
cient.

The loss function to be optimised in the VAE is: L = LR +λLKL, where the
reconstruction loss LR = BCE(x, x̂), BCE is binary cross entropy, x is a data-
point, x̂ is the reconstruction of x, LKL is the Kullback-Leibler divergence from
the desired distribution to the distribution observed in the latent codes, and λ is
a hyperparameter controlling the strength of the Kullback-Leibler regularisation.

A mean square error loss function was also tested in preliminary experiments
and did not give any improvement. It is known to result in more “blurry” results
in image-processing VAE tasks.

5 Data and Preprocessing

The data used is a commercially-available library of drum loops, Mega Pack
from Groove Monkee2. The library is categorized by style and tempo. For each

2 https://groovemonkee.com/collections/midi-loops/products/mega-pack

8 James McDermott

“song”, several loops are provided, giving (for example) an intro, a main beat,
and a fill. 29,694 loops are provided. We discard any loops not in 2/4, 4/4 or
8/4 time signatures. We discard any loops which are less than 8 or more than 32
beats in length. We also ignore tempo information. For loops of 8 or 16 beats,
we replicate them to bring their length to 32 beats. We quantize all hits to the
nearest half-beat, giving 64 beats in all. We consider only 9 types of drum hits:
BD (bass), SD (snare), OH (open hi-hat), CH (closed hi-hat), RD (ride), CR
(crash), LT (low tom), MT (mid-tom), and HT (high tom). Any other drums
are mapped to their nearest equivalents. As a result of this preprocessing, we
have 9,468 drum loops, each of shape (9 x 64).

The library is thus comparable to MNIST, which consists of 60,000 images,
each of size (28 x 28), with 10 digit labels which are thrown away when using the
dataset with unsupervised approaches such as VAEs3. Although MNIST is seen
as a small-scale and relatively easy problem for modern neural network meth-
ods, it was originally proposed as a problem of real-world significance. Similar
to MNIST, the small scale of the drum loops does not imply that the problem
is too small to be useful. In fact, in a sense our task is much more interesting.
In MNIST there are 10 digit classes. Each digit could be represented (discarding
handwriting style) in just 4 bits (23 < 10 < 24). No such representation would
be possible for drum tracks. In fact, it seems unlikely that a very small represen-
tation (less than 10 dimensions, say) would be sufficient to capture most of the
interesting and important variation in the drum loop corpus. This hypothesis
will be tested in Section 6.3.

Although the library is commercially available, a sample is available for free
download4. Our code for preprocessing the data and for learning the representa-
tion is available5 and works also with the cut-down library. The neural network is
implemented using PyTorch6, and our code is partly based on a previous model7.

6 Experiments and Results

We now proceed to evaluate the learned representation in several ways. In several
cases we show results by plotting samples of the resulting drum loops as step
sequencer-like grids. Corresponding drum loops are also available8.

6.1 Samples

Sampling from the latent space and running forward to give new drum loops can
give us an idea of the quality of the representation. Fig. 2 shows some results.

3 http://yann.lecun.com/exdb/mnist/
4 http://groovemonkee.com/collections/midi-loops/products/

drum-freebie-pak-gm
5 https://github.com/jmmcd/drum-manifold
6 https://pytorch.org/
7 https://github.com/znxlwm/pytorch-generative-model-collections
8 https://github.com/jmmcd/drum-manifold

Representation Learning for Drum Loops with a Variational Autoencoder 9

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

Fig. 2. Samples from the new representation after 1 epoch (top), after 5 epochs (second
from top) and after 300 epochs (bottom two).

In the early epochs of learning (top) almost nothing has been learned about
the drum loops except that bass drums (BD) on multiples of 4 are common.
After 5 epochs (second from top), the model has learned something about bass
and snare patterns and begins to de-emphasise mid- and low-toms. After 300
epochs (bottom two), the model has learned to produce “clean”-looking loops,
with regularity and with the idea of embellishment at the end of the loop.

6.2 Comparison with Principal Components Analysis

As already described, Principal Components Analysis (PCA) can be used to learn
a low-dimensional representation directly from the data. Here, we implement the
standard PCA algorithm, retaining the 20 dimensions which capture the greatest
variance in the data. Thus, the dimensionality is the same as in the VAE hidden
layer. We then sample from the low-dimensional PCA space. Some results are
shown in Fig. 3: they demonstrate almost none of the learning demonstrated by
the neural model in the previous section. Thus, PCA fails to provide a useful
representation in this case. It seems that the distribution of the drum loops in
the original space cannot be well captured in by the linear transformation offered
by PCA. A VAE uses non-linear transformations, and these seem to be essential.
This is an expected result.

6.3 Analysing hyperparameters

Several neural network hyperparameters are worth investigating. The number
of neurons per layer represents an important trade-off: more neurons gives more

10 James McDermott

Fig. 3. Samples from a PCA representation.

representational power, i.e. ability to represent detailed differences between drum
loops; but it requires more computation time, it may encourage over-fitting, and
in the case of the latent code layer, it means the user of the eventual latent code
would be forced to work in a higher-dimensional space. In this experiment we
start with a known-good configuration z = 20 and h = 400, and vary the z and
h values.

10 20 30 40
z

0

20

40

60

80

100

120

Lo
ss

Loss
Recon
KL

100 150 200 250 300 350 400
h

20

40

60

80

100

Lo
ss

Loss
Recon
KL

Fig. 4. The effect on network loss of the hyperparameters z, the size of the latent
space (left) and h, the size of the hidden layers (right). The values shown are the two
components of the loss and their weighted sum L = LR +λLKL at the end of training.

For z < 20 there is some degradation of reconstruction quality, because the
small latent codes are insufficient to encode all the detail of the drum loops. For
z > 20 there is no further benefit. For h again smaller values slightly degrade
performance, but the effect is slight. Therefore, remaining experiments use z =
20 and h = 400.

6.4 Distribution of latent codes

Next, our goal is to demonstrate that the VAE approach is effective. In particular,
the VAE introduces a regularisation penalty proportional to LKL, which mea-
sures how dissimilar the distribution of latent codes is from the desired Gaussian
distribution. The purpose of this penalty is to force the network to find a repre-
sentation in which the latent codes of the training data is Gaussian-distributed.
The strength of the penalty is controlled by the λ parameter.

Representation Learning for Drum Loops with a Variational Autoencoder 11

We return to the known-good configuration z = 20 and h = 400, and test
two values, λ = 0 (no regularisation) and λ = 1 (the default for VAE). Results
are shown in Fig. 5. λ = 0 gives no control over the distribution (left) whereas
λ = 1, the VAE default value (right), forces the distribution to be similar to a
Gaussian with variance 1 centred at the origin.

Fig. 5. The effect of the λ parameter on the distribution of latent codes. The first two
dimensions of the latent codes are shown.

6.5 Reconstructions

The ability to reconstruct a drum loop, that is to take a loop, encode it to
the new representation, and then decode it, is a good test of the quality of
the learned representation. Ideally the reconstruction should closely match the
original. Our representation succeeds in this, with some caveats. An example is
shown in Fig. 6. Here the original drum loop (top) is unseen during training.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

Fig. 6. Reconstruction of drum loops: original (top) and reconstruction (bottom)

The original pattern is closely matched, overall. However, a large number
of “ghost notes” are introduced in the reconstruction, i.e. low-velocity drum

12 James McDermott

hits. This does not occur for all original patterns, but is more common in loops
sampled from the model than in the original corpus. The equivalent in an image-
processing context would be a blurry image: such results are known to occur when
training VAEs using mean square error loss functions, instead of binary cross
entropy, for example. We have tried both and are using binary cross entropy
for all reported results. In our context, the result may be due to the sigmoid
mapping at the output, which would need a very large negative value as input
in order to produce an output of velocity 0. Alternative activation functions will
be investigated in future work to deal with this issue.

6.6 Interpolations

Interpolation or blending between a pair of items is a fundamental ingredient
of some algorithms, such as evolutionary search. To test interpolation in the
learned representation, we choose two fixed points in the learned representation,
and take several points evenly spaced in the linear interpolation between them.
For each point, we map it to a drum loop via the VAE decoder, and plot the
results in Fig. 7. There is a strong sense of changing character as the interpolation
progresses, especially in the BD (bass drum) and SD (snare drum) pattern, which
goes from quite a complex and varied beat to a simple one. It is somewhat
obscured by the presence of some ghost notes. Meanwhile, a simple pattern also
gradually emerges in the CR (crash) and HT (high tom) drums.

7 Conclusions

In this short paper we have taken initial steps towards learning a good repre-
sentation for drum loops. The idea of using a variational autoencoder to learn a
representation from an unlabelled corpus has been motivated and investigated.
A simple VAE architecture has been proposed for the task, using fully-connected
layers with ReLU, Linear and Sigmoid activation functions. The effects of several
hyperparameters have been investigated, and we have found that a reasonably
small network is sufficient to obtain good reconstructions, samples, and interpo-
lations in the latent space. They are far better than could be obtained with a
simple baseline such as PCA. Results are presented as images in the paper and
as MIDI files online.

The latent codes obtained in our representation are of size 20 (fewer are in-
sufficient, and more give no apparent advantage). This size is quite comparable
to the feature vectors developed manually by Eigenfeldt and Pasquier [5] and
by Kaliakatsos-Papakostas [10]. Taken together, this can be counted as (weak)
evidence that around 10-30 dimensions can represent sufficient detail of drum
loops. This is an encouraging result since this number is also typical of many
software synthesizers. The relevance is that human users are capable of under-
standing and controlling this number of dimensions in the context of a single
musical instrument.

Representation Learning for Drum Loops with a Variational Autoencoder 13

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

BD
SD
CH
OH
RD
CR
LT
MT
HT

Fig. 7. Interpolation in the latent space. The top loop has the latent code
(−3, 0, 0, . . . , 0), and the bottom has (+3, 0, 0, . . . , 0). The others are intermediate.
Thus, the interpolation along a single dimension only. The two values (-3, 3) are quite
“extreme” in a Gaussian distribution with standard deviation of 1.

7.1 Future Work

Several avenues are now open for future work.

As discussed, the VAE gives us control over the distribution of the training
data when mapped into the new representation, which in turn allows us to
sample, tweak, and interpolate in the new representation without the danger
of sampling from an under-learned area. However, the VAE does not guarantee
some other properties which would be useful in a representation, especially for
human-computer interfaces.

One such representation property is sometimes referred to as being disentan-
gled or having semantic dimensions. This means that varying just one dimension
of the latent space will cause just one perceptual property of the output to vary.
There may be no way to define just what a perceptual property is for any par-
ticular domain, but for example in the MNIST dataset of handwritten digits,
it is possible to learn a disentangled representation in which two of the dimen-
sions represent the slant of the digit (from left-slanting to right-slanting) and

14 James McDermott

the boldness of the digit (from very thin to very bold). The properties of slant
and boldness are semantic and are closely aligned to our perception.

In the representation learned by a VAE, dimensions are entangled and not
semantic. The Beta VAE strongly increases the regularisation penalty, which is
claimed to have the effect of encouraging disentangled representations [8]. The
Shrink AE and Dirac Delta VAE enforce a very tight distribution, forcing the
network to use the non-saturating parts of a tanh activation function, which
may have the same effect [3]. The Wasserstein GAN encourages a disentangled
distribution by using the Wasserstein or Earth-mover’s metric on probability
distributions, which improves training behaviour [1]. The Wasserstein AE trans-
poses the same idea to the VAE world, where training is generally easier [17].
However, the most interesting possibility for us is the infoGAN, i.e. information-
theoretic GAN, in which a semantic/disentangled property of a subset of the
dimensions in the latent code is explictly maximised by the loss function [4].

Another property which could be of interest is to look for a distribution
other than a Gaussian in the latent codes. Although a Gaussian is natural for
statistical approaches, a human user may prefer to think of the representation
as being uniform in a hypercube. VAEs do not naturally allow this, but GANs
allow extra flexibility in the distribution [7].

In future work, we can also consider both CNNs and RNNs. As discussed in
Section 3.2, typical image-processing convolution kernels may not be appropriate
for drum loops, and so there is the possibility of creating custom kernels to encode
our assumptions about the importance of horizontal and vertical relationships
in a drum loop.

Finally, the real test of any representation is a set of user studies, and this is
also planned.

Acknowledgments. Thanks to the anonymous reviewers for helpful sugges-
tions.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

2. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel
Journal of Mathematics 52(1-2), 46–52 (1985)

3. Cao, V.L., Nicolau, M., McDermott, J.: Learning neural representations
for network anomaly detection. IEEE Transactions on Cybernetics (2018).
https://doi.org/10.1109/TCYB.2018.2838668, in press

4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: Interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2172–
2180 (2016)

5. Eigenfeldt, A., Pasquier, P.: Evolving structures for electronic dance music. In: Pro-
ceedings of the 15th annual conference on Genetic and evolutionary computation.
pp. 319–326. ACM (2013)

Representation Learning for Drum Loops with a Variational Autoencoder 15

6. Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., Norouzi,
M.: Neural audio synthesis of musical notes with wavenet autoencoders. arXiv
preprint arXiv:1704.01279 (2017)

7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

8. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., Lerchner, A.: Beta-VAE: Learning basic visual concepts with a constrained
variational framework. In: ICLR 2017 (2016), https://openreview.net/forum?

id=Sy2fzU9gl
9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-

ral networks. Science 313(5786), 504–507 (2006)
10. Kaliakatsos-Papakostas, M.: Generating drum rhythms through data-driven con-

ceptual blending of features and genetic algorithms. In: International Conference
on Computational Intelligence in Music, Sound, Art and Design. pp. 145–160.
Springer (2018)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

13. Manzelli, R., Thakkar, V., Siahkamari, A., Kulis, B.: An end to end model for
automatic music generation: Combining deep raw and symbolic audio networks.
In: Pasquier, P., Bown, O., Eigenfeldt, A. (eds.) 6th International Workshop on
Musical Metacreation (MUME 2018). Salamanca, Spain (June 2018), held at the
Ninth International Conference on Computational Creativity, ICCC 2018

14. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies. pp. 746–751 (2013)

15. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (November 2007), http://eden.dei.uc.pt/~moraglio/

16. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Physica-
Verlag, 2nd edn. (2006)

17. Rubenstein, P.K., Schoelkopf, B., Tolstikhin, I.: Learning disentangled represen-
tations with Wasserstein auto-encoders. In: ICLR 2018 Workshop (2018), https:
//openreview.net/pdf?id=Hy79-UJPM

18. Simon, I., Roberts, A., Raffel, C., Engel, J., Hawthorne, C., Eck, D.: Learning a
latent space of multitrack measures. arXiv preprint arXiv:1806.00195 (2018)

19. Sturm, B.: What do these 5,599,881 parameters mean? an analysis of a specific
lstm music transcription model, starting with the 70,281 parameters of the softmax
layer. In: Pasquier, P., Bown, O., Eigenfeldt, A. (eds.) 6th International Workshop
on Musical Metacreation (MUME 2018). Salamanca, Spain (June 2018), held at
the Ninth International Conference on Computational Creativity, ICCC 2018

20. Trieu, N., Keller, R.: Jazzgan: Improvising with generative adversarial networks.
In: Pasquier, P., Bown, O., Eigenfeldt, A. (eds.) 6th International Workshop on
Musical Metacreation (MUME 2018). Salamanca, Spain (June 2018), held at the
Ninth International Conference on Computational Creativity, ICCC 2018

21. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499 (2016)

