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Abstract. Cadential Retention is a process to combine the V-I progres-
sion to regard as a single pitch event and to give a high salience, in the
time-span tree of the Generative Theory of Tonal Music. Though the
theory was implemented as an automatic analyzer, this process has been
lacked and needed to be compensated. In this paper, we propose a funda-
mental procedure to realize this. We presuppose that the chord names are
already assigned on the target score; then, the system first hypothesizes
all the possible combinations of the key and the degree, finds plausible
connections between them, and detects cadences. We employ dynamic
programming to connect chords, and calculate the chord distance by the
revised Tonal Pitch Space. Also, we restrict the minor scale to the har-
monic one to avoid the ambiguity in chord interpretation. In our system,
we show the final result of the revised time-span tree, including the local
cadences.

Keywords: Cadence, Generative Theory of Tonal Music, the Tonal
Pitch Space

1 Introduction

The Generative Theory of Tonal Music (GTTM), proposed by Lerdahl and Jack-
endoff [1] is one of the most promising theories of constructive musicology, which
retrieves the latent structure of music. This theory consists of comparatively
rigorous rules for analysis though the application of the rules is sometimes am-
biguous. Hamanaka et al. [2–4] have implemented the theory on computer, and
has opened the analyzer exGTTM as free use, however, it has not included ca-
dential retention that is to identify the cadences and to give high saliency in the
time-span tree.

In finding cadences, we need the preprocess of chord analysis, that is to
identify the key and the degree for each chord. Furthermore, in order to acquire
the chord information, we need to distinguish the constituent notes in a chord
from those passing or auxiliary notes, suspensions, or appoggiatura, and also in
some cases we may need to compensate the missing roots.

On the other hand, the recent music scores, especially in popular music,
accompany those Berklee chord names in the style called lead sheet. This kind
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of sheet music is helpful for us to identify chord functions, however, we may still
need the information on the distance between chords, and thus we employ the
Tonal Pitch Space (TPS) [5].

In this paper, we first show the process to find cadences, including so-called
local cadences, that work as local articulation in a music piece. Then, we intro-
duce Viterbi algorithm to find plausible connections of chords with the revised
TPS on the harmonic minor scale. Lastly, we present the whole process to com-
pose the time-span tree with cadential retention.

This paper is organized as follows. In related works in Section 2, we intro-
duce the preceded works which directly concern our current research, as well
as fundamental music theories. In Section 3, we give our formal representation
and algorithm on finding local cadences. In Section 4, we show our experimental
results and in Section 5 we summarize our contribution.

2 Related Works

2.1 Cadence in GTTM

GTTM first articulates the music score into groups; the shorter ones correspond
to phrases/motifs and the combined longer group results in a whole melody.
Thereafter, the theory assigns the metrical importance to each pitch event based
on its rhythm. Regarding those pitch events locating at the both ends of each
group and/or those with the metrically strong beats more salient, GTTM com-
poses the time-span tree where the salient events extend more upwards, compared
with neighboring events (branches), absorbing those subordinate branches. Fi-
nally, the time-span tree is reorganized to the prolongational tree including the
chord information, which represents the tonal stability.

Although we can disregard the chord progression in the time-span analysis,
the cadence is the exception; we need to connect the two chords of V-I and to
regard as a single pitch event. In the original theory [1], the process of chord
analysis was not mentioned, and thus, the implemented time-span analyzer [2]
has also lacked this process.

Later, Lerdahl presented the compensating theory called Tonal Pitch Space
(TPS) [5] to give a clue to identify the chord functions. TPS calculates the
distance of two given chords. The progression from V to I, for example, is quite
smooth, and thus V-I has a shorter distance. Within a key, the less natural
progression owns the larger value of distance. Also, the progression to a chord in
a modulation owns a longer distance. Among the modulations, the migration to
the unrelated key from the current key has further penalty. In this way, the theory
finds the shortest distance among chords, and identifies their chord functions as
well as the dominant motion.

2.2 Harmony Analysis with TPS

Sakamoto [6] has proposed a Viterbi algorithm, given a network of candidates
of chord identifiers, to find a path with the shortest distance based on the Tonal
Pitch Space. This process is detailed as follows.
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Fig. 1. Graphic representation of candidate harmony

1. Given a sequence of Berklee chord names; e.g., C ⇒ F ⇒ G ⇒ C.
2. Assign possible combinations for each chord name; e.g., C can be regarded

either I/C, IV/G, V/F, VI/e or III/a (Roman numerals denote the degrees
of the chord and bold alphabets denote the keys).

3. A pair of adjacent chord names produces a bipartite graph since the chord
names are interpreted in multiple ways and are connected by possible links
as shown in Fig. 1.

4. Calculate the distance by the TPS from the start node to the goal node by
Viterbi dynamic programming; e.g., in case C ⇒ F ⇒ G ⇒ C is given, the
path of I/C – IV/C – V/C – I/C becomes the shortest.

We regard that the numerically smallest path, i.e., the shortest path is the most
plausible interpretation of keys and degrees. This intuition is supported by the
following criteria.

– In general, the distance between two chords becomes smaller when they do
not include modulation, and the modulation does not occur unnecessarily.

– The cadential progression such as V–I becomes shorter distance, and thus
the shorter distance reflects the cadential progression which is more smooth
in motion.

2.3 The Revised Tonal Pitch Space

Yamaguchi et al.[7] has revised the theory of Tonal Pitch Space to analyze jazz.
They claimed that the defects of the original theory are (i) the variety of chords
was too limited to treat modern popular music, and (ii) those non-diatonic chords
which often appear in the current jazz should be included in the analysis. The
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level a (root): 0
level b (fifth): 0 7
level c (triadic): 0 4 7
level d (chordal): 0 4 7 10
level e (diatonic): 0 2 4 5 7 9 10 11
level f (chromatic): 0 1 2 3 4 5 6 7 8 9 10 11

Fig. 2. Basic space of I7/C based on Yamaguchi’s extension. They added another level
called chordal between triadic and diatonic level.

main issue here was that extended constitute notes such as the seventh (7-th)
tone of tetrad chord was classified at the level c (triadic) and gave the same
value as the third; the seventh is often omitted whereas the third owes a critical
role to decide whether major or minor. They have revised the theory to add
another level called chordal, to distinguish the third and the seventh, between
level c (triadic) and e (diatonic) as shown in Fig. 2.

2.4 Revision on Cadential Retention

Matsubara et al.[8] revised the process of cadential retention, and added the half
cadence by the secondary dominant (Doppel-dominant) and the local cadence.
As for the latter, the notion is ill-defined in the previous work and thus we
redefine it in the following section. The half cadence is mainly organized solely
by a single V (dominant) chord, however, it often appears following the double-
dominant as V/V–V/I or V/V –V/i. Since this progression can be regarded in
the similar way to V–I in the full cadence, Matsubara formalized the process
to unify the two events as one, like other cadential retention, proposing the
half-egg-symbol as opposed to egg-symbol in the full cadence in GTTM.

They proposed the algorithm of cadential retention as follows.

1. Group such two pitch events e1, e2 as V – I, VI – I, or V/V – V/I, and
assign functions according to Viterbi algorithm [6]. Here, we disregard the
following two consecutive pitch events.
– when two ends of the pitch events do not coincide.
– when the end of unified two events does not coincide with the end of the

upper group.
2. Unify e1 and e2 as one pitch event, assigning the egg-marker and regarding

the head of the current group. Treat this head as a single event in the upper
group.

3. Repeat the process by the root of the whole tree.

3 Formal Representation of Local Cadence

We propose the revised TPS, integrating Yamaguchi[7] and Matsubara[8].

– We restrict the minor scale to the harmonic one.
– We reinterpret the chord which has a dominant function (Fig. 3).
– We add another chordal level to the basic space.
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Major Scale (Triads) Harmonic Minor Scale (Triads)

C        Dm     Em       F        G        Am     Bm-5

CM7    Dm7   Em7    FM7    G7      Am7   Bm7-5

Am    Bm-5  Caug     Dm      E         F      G#m-5

AmM7  Bm7-5 CM7+5  Dm7    E7     FM7   G#dim

I             ii            iii           IV           V           vi           V7     / C

I7           ii7         iii7         IV7         V7         vi7         V9      / C

i            V9          V            iv           V            VI           V7     / a

Major Scale (Tetrads) Harmonic Minor Scale (Tetrads)

i7           V11        V           iv7          V7         VI7        V9     / a

Fig. 3. Restricting the harmonic minor scale and reinterpreting the chord which has
a dominant function. The chords in the broken lines are dominants and those in the
solid lines are extended.

VII (27) vii (20) II (18)
♯i (27) III (18) iii (11) V (9) v (16)

♯IV (32) ♯iv (25) VI (16) vi (9) I (0) i (7) ♭III (16) ♭iii (23)
ii (14) IV (9) iv (16) ♭VI (18) ♭vi (25)

♭VII (18) ♭vii (25) ♭II (27)
Regional distances from I

vii (27) II (25)
III (25) iii (18) V (16) v (11) ♭VII (14) ♭vii (21)

♯iv (32) VI (23) vi (16) I (7) i (0) ♭III (9) ♭iii (16) ♭V (25)
ii (21) IV (16) iv (11) ♭VI (11) ♭vi (18) ♭I (27)

♭II (20) ♭ii (27)
Regional distances from i

Fig. 4. Regional space of revised TPS

3.1 Redefine Regional Distance of TPS

By restricting to the harmonic minor scale and adding the level to the basic
space, we need to recalculate the basic space distance basicspace (x, y) be-
tween the chords.

Here, we describe the regional distance ∆(Rx, Ry) between the tonic chords
of different keys. Fig. 4 shows the regional space of the revised TPS. The part
surrounded by the convex polygon is the related keys. The distance increases
in general as compared with the conventional one. However, since the regional
distances does not increase uniformly; in minor keys, the shortest path from i
to ii and ♭vii decreased.

The comparison with the human musical intuition of the regional distance
redefined by the proposed method is a future work.
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Table 1. Types of chords, corresponding Berklee chord names, and a list of interpre-
tations

Interpretation with
Chord type Symbol TPS Revised TPS

Major triad C
I/I, III/vi, IV/V, I/I, III/vi, IV/V,
V/IV, VI/iii, VII/ii V/IV, V/iv

Minor triad Cm
i/i, ii/♭VII, iii/♭VI, i/i, ii/♭VII, iii/♭VI,
iv/v, v/iv, vi/♭III iv/v, vi/♭III

Diminished triad Cdim ii◦/♭vii，vii◦/♭II
ii◦/♭vii,�V9/♭vii,

vii◦/♭II,�V7/♭II,

vii◦/♯i,�V7/♯i

Augmented triad Caug (N/A)
III+/♯i, V/♯i, III+/iv,

V/iv, III+/vi, V/vi

Dominant seventh C7 V7/IV, VII7/ii V7/IV, V7/iv

Major seventh CM7
I7/I, III7/vi， I7/I，IV7/V, VI7/iiiIV7/V, VI7/iii

Minor seventh Cm7
i7/i, ii7/♭VII, iii7/♭VI, ii7/♭VII, iii7/♭VI,
iv7/v, v7/iv, vi7/♭III iv7/v，vi7/♭III

Diminished seventh Cdim7 (N/A)
vii◦7/♯i,�V9/♯i, vii

◦
7/iii,

�V9/iii, vii
◦
7/v,�V9/v,

vii◦7/♭vii,�V9/♭vii

Augmented seventh CM7+5 (N/A) III+7 /vi, V/vi

Half diminished seventh C∅ ii∅7 /♭vii, vii
∅
7 /♭II

ii∅7 /♭vii,�V11/♭vii

vii∅7 /♭II,�V9/♭II

Minor major seventh CmM7 (N/A) i7/i

Major ninth C9 V9/IV V9/IV

Minor ninth C7-9 VII9/ii V9/iv

3.2 Reinterpretation of dominant function by revised TPS

By restricting to the scale and reinterpreting the dominant chords, possible in-
terpretations of Berklee chord name increase. Table 1 shows types of chords and
corresponding Berklee chord name and a list of interpretations before and after
applying the proposed method. Here, the root is C in the chord symbol column,
and C major is described as I in the interpretation column. The one underlined
represents what has been interpreted as a chord having a dominant function by
correcting the constituent note.

3.3 Local Cadence Formalization

Extending half cadence In this research, we formalize the extension of ca-
dence proposed by Matsubara [8]. We redefine the all dominant chords on the
V with tetrad or pentad with / without root as the secondary chord of half
cadence. Table 2 shows all the harmonic progression to be a cadence that made
the above extension. The chord candidates with dominant function is limited to
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Table 2. Extending dominant function: Where, D is a dominant (any function whose
degree is V, including ones with missing root).

Kind of cadence Major key Minor key

Full cadence
V/I → I/I V/i → i/i
V7/I → I/I V7/i → i/i

Deceptive cadence
V/I → vi/I V/i → VI/i
V7/I → vi/I V7/i → VI/i

Half cadence (1 chord) → V/I → V/i

Half cadence (2 chords)
D/V → V/I D/v → V/i
(D ∈ {V,V7,�V7,V9,�V9,V11,�V11})

the secondary dominant which precedes the half cadence in this research. This is
because dominant chords of the full cadence or the deceptive cadence are limited
to V and V7 in the classical era, and other chords on V will not be treated as
cadence at the end of harmony progression.

Local cadence Consider the chord progression ci−1 → ci, which is not a ca-
dence, but to be a “local cadence” if ci−1 and ci can satisfy the conditions by
selecting their harmonic functions arbitrarily.

This definition is aimed at carrying out cadential retention to the harmony
progression which is not to be a cadence as a whole, but to be a cadence if ignor-
ing the context before and after its appearance. As an example of local cadence,
Fig. 5 shows the harmony analysis of R. Wagner’s “Tannhäuser Overture”. Ac-
cording to the analysis, the chord progression E♭ → Fm in the bars 3 – 4 was
interpreted as I/E♭→ ii/E♭, and another possible interpretation V/A♭→ vi/A♭
was not selected. Ignoring the contexts before and after it, these chords can be
interpreted as chords on A♭, thus we can treat this as the deceptive cadence.

3.4 Computational implementation

Our proposed method consists of the following three steps: Harmony analysis,
Cadence detection, and Cadential retention.

1. Harmony analysis:Given a MusicXML of monophonic melody with Berklee
chord names, outputs Harmony Graph which illustrates the most plausible
interpretation of chord progressions by Viterbi algorithm described in Sec-
tion 2.2.

2. Cadence detection: Combining the chord progressions, GroupingXML and
Time-spanXML derived from exGTTM[9], detects the progression to be a
cadence including a local cadence.

3. Cadential retention: Assigning the cadential retention to the detected
cadence, rearranges the Time-span tree, and outputs Time-spanXML and
Time-span tree visualization.
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S

N.C.

I/E♭
(0)

VI/g
(0)

V/A♭
(0)

V/g♯
(0)

IV/B♭
(0)

E♭

i/c
(9)

vi/E♭
(8)

iv/g
(8)

iii/A♭
(8)

ii/B♭
(8)

Cm

I/E♭
(16)

VI/g
(16)

V/A♭
(16)

V/g♯
(21)

IV/B♭
(16)

E♭

VI/c
(24)

V/D♭
(25)

V/c♯
(32)

IV/E♭
(23)

I/A♭
(23)

A♭

I/E♭
(30)

VI/g
(33)

V/A♭
(30)

V/g♯
(35)

IV/B♭
(32)

E♭

iv/c
(42)

iii/D♭
(43)

ii/E♭
(41)

i/f
(42)

vi/A♭
(41)

Fm

IV/C
(49)

I/F
(49)

VI/a
(52)

V/B♭
(45)

V/b♭
(46)

F

V7/E♭
(55)

V7/d♯
(58)

B♭7

I/E♭
(63)

VI/g
(66)

V/A♭
(65)

V/g♯
(70)

IV/B♭
(65)

E♭

i/c
(72)

vi/E♭
(71)

iv/g
(74)

iii/A♭
(73)

ii/B♭
(73)

Cm

I/E♭
(79)

VI/g
(82)

V/A♭
(81)

V/g♯
(86)

IV/B♭
(81)

E♭

VI/d
(91)

V/E♭
(86)

V/d♯
(91)

IV/F
(90)

I/B♭
(88)

B♭

G

Fig. 5. Example of detecting local cadence in harmony graph. (Upper) Score of R.
Wagner’s “Tannhäuser Overture” with Berklee chord names and grouping structure.
(Lower) Harmony graph. The red symbols and circles indicate local cadence and the
blue symbol indicates half or full cadence.

4 Experimental Results and Discussions

We used GroupingXML, Time-spanXML from GTTM database[10], and Mu-
sicXML files as input data. We selected 127 out of 300 phrases whose Berklee
chord names were printed in the score[11]. We introduce representative results
and discuss them.

Harmony analysis Fig. 6 shows the experimental results of harmony analy-
sis at the beginning of F. Chopin’s “The Preludes, op. 28–15”. In the harmony
graph, the solid lines indicate estimated chord progression and blue nodes rep-
resent the normal cadence, and red nodes are the local cadence.

From the result of harmony analysis, this phrase consisted of only V7/D♭
and I/D♭, namely all A♭7 to D♭ were to be a progression of full cadence. How-
ever, integrating the results of harmony, grouping, and time-span analysis, our
proposed method can detect the cadence progressions.



Computational Detection of Local Cadence on Revised TPS 9

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D

S

I/D♭
(0)

VI/f
(0)

V/F♯
(0)

V/f♯
(0)

IV/A♭
(0)

D♭

V7/D♭
(8)

V7/c♯
(12)

A♭7

I/D♭
(16)

VI/f
(19)

V/F♯
(18)

V/f♯
(24)

IV/A♭
(18)

D♭

V7/D♭
(24)

V7/c♯
(29)

A♭7

I/D♭
(32)

VI/f
(35)

V/F♯
(34)

V/f♯
(41)

IV/A♭
(34)

D♭

V7/D♭
(40)

V7/c♯
(45)

A♭7

I/D♭
(48)

VI/f
(51)

V/F♯
(50)

V/f♯
(57)

IV/A♭
(50)

D♭

V7/D♭
(56)

V7/c♯
(61)

A♭7

I/D♭
(64)

VI/f
(67)

V/F♯
(66)

V/f♯
(73)

IV/A♭
(66)

D♭

V7/D♭
(72)

V7/c♯
(77)

A♭7

I/D♭
(80)

VI/f
(83)

V/F♯
(82)

V/f♯
(89)

IV/A♭
(82)

D♭

V7/D♭
(88)

V7/c♯
(93)

A♭7

I/D♭
(96)

VI/f
(99)

V/F♯
(98)

V/f♯
(105)

IV/A♭
(98)

D♭

V7/D♭
(104)

V7/c♯
(109)

A♭7

I/D♭
(112)

VI/f
(115)

V/F♯
(114)

V/f♯
(121)

IV/A♭
(114)

D♭

G

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D
V7/D

I/D

Fig. 6. Results of F. Chopin’s “The Preludes, op. 28–15”. (Upper) Original Time-span
tree from GTTM database and score with Berklee chord names as input data. (Lower)
Harmony graph and Time-span tree with cadential retention as outputs. The blue
branches were detected as the cadence and rearranged.
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N.C.
I/E

vi/E
I/E

IV/E
I/E

ii/E
V/B

V7/E
I/E

vi/E
I/E

V/E

N.C.
I/E

vi/E
I/E

IV/E
I/E

ii/E
V/B

V7/E
I/E

vi/E
I/E

V/E

Fig. 7. Result of R. Wagner’s “Tannhäuser Overture”. (Upper) Original Time-span
tree from GTTM database. (Lower) Time-span tree with cadential retention. The blue
branches were detected as the full cadence and the red ones were detected as the local
cadence, and they were rearranged. Score and harmony graph were shown in Fig. 5.

Cadential Retention Fig. 7 shows the results of cadential retention at the
beginning of R. Wagner’s “Tannhäuser Overture”. As shown in the bars 3–4
in Fig. 5, a possible interpretation V/A♭ → vi/A♭ chords can be interpreted
as chords on A♭ as local deceptive cadence. After detecting the local cadence,
Time-span tree was modified at the third beat of bars 3 from where the penult
of local cadence begins. As a result, the penult and final were unified at higher
level in the Time-span tree.

5 Conclusion

In this research, we showed our subprocess of cadential retention, which has
been left unaccomplished in the automatic analyzer of GTTM. We presupposed
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that the Berklee chord names were already assigned on the target score, and
restricted the minor scale to the harmonic one to avoid the ambiguity in chord
interpretation.

Then, the system first hypothesized all the possible combinations of the keys
and the degrees, looked for plausible connections between them, and identified
the path with the shortest distance where we employed Viterbi algorithm with
the revised TPS. We have shown several results of cadential retention, as well
as local cadences, in the tree format.

Our contribution is not only the compensation for the GTTM analyzer. In
addition to the use of Viterbi algorithm and the revised TPS, we clarified the
articulation by local cadences, which has not been included in the original theory.

The original contribution of GTTM is to externalize the hidden rules in music
composition. Then, we have added such rules as cadential retention, including
the local ones, to the original theory. We believe that the formulation of rules
would contribute to the music creativity, since we could evoke these rules in the
generative process of music.
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