Resonant Element: An Application for the
Continuous Generation of Pop-Inspired Music

B.T. Franklin

Dunesailer Research
btfranklin@dunesailer.science

Abstract. This paper describes the Resonant Element music generation
system, which is capable of generating a continuous stream of music
based upon observed attributes of Western popular music. It explains
the conceptual foundations of the architectural strategy, including the
intended use cases of the system. It summarizes the representational
structure and generation process of the application, with particular focus
placed upon the use of chord progressions, stochastic note transitions,
histograms, and LRU pattern caching. It provides a basic evaluation of
the system, along with a summary of future development directions.

Keywords: generative music, stochastic model, Markov chain, continu-
ous music, MIDI output, note histogram, background music, chord pro-
gression, computational creativity

1 Introduction

Algorithmic frameworks and systems for the generation of music are abundant,
and can be segmented based upon various philosophical and practical charac-
teristics. These include the underlying generative theory[1], whether or not the
music produced will be continuous, whether or not the system will be interactive,
what general style or genre of music will be produced, and so forth.

The Resonant Element application has been designed and implemented from
an opinionated stance about where it should fall within this topology. The sys-
tem applies a natural, or emergent, generative theory using stochastic modeling.
The music is generated continuously, not discretely. The genre of the generated
music is configurable, but consistently draws from progressions and techniques
extracted by an analysis of a large corpus of popular music. Importantly, the
primary use case for the software is intended to be for passive background lis-
tening, so the system aims to generate music that is pleasant to listen to for
extended periods, but is not so novel that it becomes a distraction from other
tasks.

Herein is described the design process and reasoning, algorithmic details,
lessons and discoveries obtained during the implementation of Resonant Element.



2 B.T. Franklin

2 Conceptual Foundation

As mentioned above, passive listening alongside the performance of other tasks
is one of the primary guiding use cases for which Resonant Element is intended.
In light of this, the approach to music generation needs to consider the charac-
teristics that are most compatible with this use case, and the use case contains
various modes depending on the task to be performed during the listening ses-
sion. For example, the music generated for listening while trying to sleep or relax
must be very different from the music generated for doing creative work such as
writing prose or computer code, and these must in turn be different from the
music generated for listening to while exercising or doing a similar high-energy
activity.

While each of these use cases contains markedly different required musical
attributes, the identification of common underlying characteristics was also nec-
essary in order to formulate a coherent and cohesive system.

2.1 Popular Music

Western culture has given rise to an enormous variety of musical styles and
genres, and it would be extremely difficult to attempt to reproduce all of them
in any single generative system. Simultaneously, if music can be said to reflect
the culture that creates it, then it stands to reason that the most popular music
within a culture is likely to also be a strong reflection of the generating culture’s
aesthetic opinions and values. Of the subset of human emotions that music is
commonly capable of expressing or evoking[2], popular music (commonly referred
to as “pop” music) has been used to express or evoke all of them.

Significant analytical research has been done on the musical tropes that ap-
pear in the corpus of pop music, in particular with regard to the frequency of
specific chord progressions[3]. This provides a solid probabilistic basis from which
to construct a stochastic model.

Consequently, pop music was chosen as the guiding musical influence upon
which to construct the SongSkill system that was the predecessor of Resonant
Element, and which has been described in a previous publication[4].

2.2 Emotion Evocation

As mentioned previously, the immediate predecessor of Resonant Element was
the SongSkill system, which was created based upon a use case of evoking spe-
cific selected emotions[4]. While the use case goals of Resonant Element are not
the same as those of SongSkill, it did inform the design and implementation
of the later application, and builds upon the research findings of that project.
A cornerstone finding of the prior work was that it is effectively impossible to
reliably evoke a particular emotion across a cross-section of listeners due to the
nature of emotion evocation being strongly dependent upon personal experience
and aesthetic preferences. In contrast, it is relatively easy to express a partic-
ular emotion musically, at least within the bounds of a specific set of cultural



Resonant Element: A Generator for Pop-Inspired Music 3

expectations[5], even using an automated rule-based system. As a result of this
finding, the latter approach became the focus of the newer system.

2.3 Aesthetic Clustering (Genres)

Although the generative model of Resonant Element is based upon the probabil-
ities identified within the broad umbrella of popular music, a core thesis of the
project is that the same stochastic model can be extrapolated into use for the
production of other genres that reflect similar Western cultural and aesthetic
expectations. To achieve this, the system allows configuration of the generative
parameters based upon a set of pre-determined values, grouped by genre into
“stations” (to reflect the nature of their use, which is similar to the selection of
a radio station).

2.4 Background Listening

In order to satisfy the primary use case of passive listening in the background
while the user performs other tasks, it was necessary to ensure the presence (or
absence) of specific musical characteristics from the generated output.

For stations intended for use while relaxing, meditating, or attempting to
sleep, use of melody is avoided, as this tends to produce too much “interest” in
a listener, stimulating an unwanted level of alertness. Additionally, music with
a tempo near 60 beats per minute (BPM) has been shown to be more conducive
to relaxation[6], so this target value is used by the system.

Research by Haapakangas et al.[7] has shown that understandable lyrics in
music hinder task performance in the listener due to distraction, and work by
Huang and Shih[8] has shown that music a listener feels too strongly about
(either positively or negatively) has a similar effect. In light of this, Resonant
Element avoids the use of any vocal components, and is designed to generate
music that will be received by most listeners as being of mediocre to moderately
good quality, and because the music is generated continuously and does not
replay previously-generated pieces, no particular attachment can be developed
in the listener to a specific piece.

3 Representational Structure

The system is written entirely in the Swift programming language, and runs na-
tively on both macOS and i0S platforms (though the user interface is somewhat
different between the two platform versions).

3.1 Musical Encoding

The representation of musical structure is accomplished through a design based
upon the various types of music tracker software that were popularized in the
1980s and 1990s[9], in which music is grouped into “patterns”, which in turn



4 B.T. Franklin

consist of “tracks” or “channels” that have “rows.” This very orderly, row-and-
column based system was selected because it provides a highly manageable way
to access specific notes and ranges of notes for copying, manipulation, or exami-
nation at runtime. It is also highly compatible with a playback mechanism that
operates during discrete moments of runtime availability, rather than requiring
a continuous thread of operation to achieve uninterrupted playback.

In Resonant Element, this representation consists of “sections” which con-
tain “note strips,” which in turn contain “rows.” Each row of a note strip is
able to store an arbitrary number of instructions. These instructions represent
commands to start a particular note, end a particular note, change the tempo of
playback, set the playback volume, or change the instrument that is being used
for the playback of the specific note strip.

3.2 Playback

Playback is accomplished through the built-in MIDI playback features that are
available within both macOS and i0S. A playback layer was created in order
to map the module-like structure described above to the native MIDI event
triggering facilities. A sound font is installed in order to provide a higher degree
of realism in the generated output.

A timed thread execution process is used to advance playback through all
of the note strip rows of each section to be played. Since beats are represented
by a specific number of rows, tempo is implemented in a straightforward way
by simply controlling the rate at which rows are read and executed from their
containing note strip. This playback mechanism can most easily be envisioned
as being similar to the paper strips of music used to control a pianola, in which
notes that occupy the exact same horizontal row are triggered simultaneously.
In fact, this is why the relevant data structures in Resonant Element are called
“note strips.”

4 Generation

When a new musical section is generated, the process occurs iteratively by focus-
ing on each instrument part in sequence. The exact parts involved are selected
randomly (with weighted probabilities) from a set of options that are specific to
the genre of music being generated at the time. During the generation of each
specific instrument part, various performance techniques are randomly selected
from an available set of options, which also vary with the genre. These tech-
niques are used to add notes to the note strip until the desired length of time
has been fully populated, at which time the next instrument part is generated.
This continues until every part has been fully generated for the section.

A diagram illustrating an overview of the architecture of the generation sys-
tem is shown in Fig. 1



Resonant Element: A Generator for Pop-Inspired Music

Fig. 1. Resonant Element Architecture

SongGenerator

I> Application Ul _]~ MIDI Player Engine

= startGenerating

A4 )
SongSession
createChannels
A
L I initialize
7| SectionGenerator
\ 4
initialize
SongSession A 4
create or reuse
Section
N

getNextSection

SongSessionMemory

A 4

convert section to
NoteStrips

SectionGenerator

Y

send NoteStrips E
fo MIDI ‘Player g initialize Section
Engine
SectionDesign v
invoke
create chord Section ~ PartSection

progression

PartSectionGenerator

\ 4
create chord
positions and . P

map select Techniques [«

A 4

use Techniques
to generate Notes

\ 4
adjust Notes to
stable Chord
degrees




6 B.T. Franklin
4.1 Chord Progression

A core element of the system’s generation process is the determination of a
particular chord progression to use across the section being generated. This is
achieved by first randomly selecting a series of durations for each chord that will
be active throughout the overall duration of the generated section. For example,
a typical section is four measures in length. Each chord might be one measure
in length, meaning four chords would be used in the progression. Another con-
figuration uses three chords, each of which is one measure in length, followed
by two chords, each of which is half a measure in length, producing a chord
progression that involves five chords in total. The set of possible chord duration
configurations was created by an informal summary analysis of the corpus of
popular music made available as a part of the analysis performed by Miyakawa
et al.[3]

Building upon the chord layout, a sequence of specific chords is selected
through the use of a Markov chain, starting with the selection of a first chord
using the probabilities shown in Fig. 2 and transitioning through each subsequent
one until the entire sequence is populated. The stochastic probabilities used for
the transitions are also based upon the analysis performed by Miyakawa et al.[3],
with some small modifications to remove edge cases and make the data easier to
understand. The model is described in Fig. 3.

Fig. 2. Starting chord probabilities. Chords are identified by degree.

Chord Degree Probability (%)

| 40
| 5
]| 5
v 15
Vv 25
Vi 10

After the entire sequence has been populated with specific chords, a final
adjustment phase optionally modifies the cadence (ultimate) and pre-cadence
(penultimate) chords in the series to conform with popular musical conventions
as described in Miyakawa et al.[3]



Resonant Element: A Generator for Pop-Inspired Music 7

Fig. 3. The starting chord is shown at left. Destination chords to are shown at top.
Each value is expressed as a percentage chance of the transition occurring. Higher
probabilities are indicated with darker color. Chords are identified by degree.

.I nlmhiviviwv

| | 0| 5|5 |30[45|15
11 {15 0 {10|20|25|30
I} 5 10| 0 |40|10 |35
V40| 5 0 140(10
V|30| 5 30| 0 |30
VI{15| 5 40(35| 0

O O1

After the chord progression layout has been completed, the chords are in-
terpreted using a variety of different performance techniques, such as playing
all the notes at once (block chord), playing the notes individually in a sequence
(arpeggio), or playing a pattern using various combinations of note timings.
The techniques that are available for selection vary with the genre that is being
generated.

4.2 Stochastic Note Transitions

The system is capable of generating melodies that are harmonically compati-
ble with the underlying chord progression. The melodies are monophonic, which
means their production can be handled as a stochastic progression through in-
dividual note values (including rests) with varying durations.

After a starting note pitch value is selected, the duration is selected randomly
using a stochastic probability model, with a duration of one beat being the most
likely, and with one-quarter beat and three beats being the shortest and longest
possible durations, respectively. All of the subsequent notes are selected using
another stochastic model of transition directions and extent in which the most
likely transition is zero (meaning to play the same note pitch again), and pro-
gressively larger transitions either up or down in the scale become less probable
in an approximately normal distribution, with the largest delta being three scale
degrees. Constraining the size of the transition in this way produces a more co-



8 B.T. Franklin

herent and linear “feel” to the generated melodies. This process is repeated until
the entire duration of the generated section has been populated.

The specific values of the stochastic models employed during the melody
generation process vary with the genre, allowing changes in the “feel” of the
melody by adjusting the median duration, curve shape of the pitch transition
probabilities, and likelihood of the placement of rests.

4.3 Histograms

The use of dynamic histograms to determine or influence note placement is a
novel feature of the Resonant Element application. Specifically, the system uti-
lizes a variety of techniques that reference a shared histogram which is populated
progressively as each subsequent instrument part is generated for a particular
musical section. By selecting the instrument order carefully, the later instruments
are thus enabled to respond adaptively to the note placement used by the instru-
ments for which parts have already been generated. Normalizing the histogram
at the moment when it is used allows simple percentage-based probabilities for
determining note placement.

When these histogram-driven techniques are employed, the end result creates
an illusion of musical intention across the various instruments. For example, a
bass guitar part might play a note at every place where any other note by any
other instrument is played. A snare drum might be played only at places with
somewhat higher musical density. A crash cymbal might be played only at places
where the highest musical density occurs. See Fig. 4 for an illustration of this.

Fig. 4. The table below illustrates a hypothetical case where three instrument parts
have been generated for a single measure, each contributing to the shared histogram.
The normalized histogram value (n) is then used in the generation of the later instru-
ments with varying “trigger values” to determine placement of the final three instru-
ments.

Beat
3

Instrument 1
Instrument 2

Instrument 3

Histogram Value 2 1 1 0 2 1 1 0 2 0 2 0 3 1 1 1
Normalized Value (n) 0.7/ 03| 03 0.0] 07 03 03 00]07 00 07 00] 10 03 03 03

Bass Guitar (n > 0.25)

Snare Drum (n > 0.5)

Crash Cymbal (n == 1.0)




Resonant Element: A Generator for Pop-Inspired Music 9

4.4 Section Caching

Repetition is an important element of popular music, and it lends a sense of
coherence to the music, while also producing a sense of familiarity in the listener.
Pereira et al.[10] have shown that familiarity via repetition is an important
element in establishing emotional engagement in a listener. However, the passive
listening use case of Resonant Element raises the concern that creating too much
emotional engagement can actually become a form of distraction. The system
attempts to address this by striking a balance between familiarity and novelty,
achieved by storing recently-generated musical sections in a least-recently used
(LRU) elimination cache with relatively small capacity (a maximum of four
patterns can be stored at a time).

When a new section is needed for playback, there is a chance that one of
the already-played sections stored in the cache will be used instead of a new one
being generated. If this occurs, the section is moved to the top of the cache, since
it becomes the most-recently used item. If a new section is generated instead,
then it is placed at the top of the cache, and the least-recently used section
is discarded. Because all of the sections in the cache are available with equal
probability of selection regardless of their current cache position, this strategy
strikes an effective balance between reuse of recent sections (to achieve a sense
of familiarity) and ensuring that older sections are not replayed (to ensure the
ongoing production of novel musical sections).

5 Evaluation

Providing a quantitative evaluation of a system such as this is outside of the
scope of the research goals of this project, and it can be argued that it would
be of little practical value to perform such an analysis. It is tempting to turn
to devices such as Alan Turing’s “Imitation Game” (often referred to simply
as the “Turing Test”) as a way of evaluating the quality of a generative music
system, but closer examination reveals that this is not likely to be valuable,
either. According to Ariza[11], use of the Turing Test

in the evaluation of generative music systems is superfluous and poten-
tially misleading; its evocation is an appeal to a measure of some form of
artificial thought, yet, in the context of music, it provides no more than
a listener survey.

This challenge in evaluating such a system may raise the question: What is
the goal of such an evaluation to begin with? The argument can be made that if
Resonant Element is able to successfully be used by any person for its intended
use cases, then it is “good enough.”

In discussing the evaluation of generative musical creativity, Loughran and
O’Neill[12] identify a difference between the evaluation of the behavior of the
system and the evaluation of its outputs or artifacts. In evaluating the system
rather than its artifacts, the authors suggest that the act of submitting projects



10 B.T. Franklin

to relevant conferences and journals for peer review is a form of evaluation, since
the underlying processes and reasoning are the focus.

In the case of Resonant Element, the output is continuous and transient,
making evaluation of any given artifact somewhat meaningless, other than in
aggregate.

It is substantially more straightforward to evaluate some of the practical
realities of the system’s use, which are related directly to the quality of the user
experience, and therefore to the fulfillment of the intended primary use case
of supplying music for passive background listening while the listener performs
other tasks.

5.1 Playback Timing

The native Apple MIDI playback engine that is used by Resonant Element is not
really intended to be used in a timing-controlled, row-based playback methodol-
ogy. The MIDI engine has extensive support for the playback of standard MIDI
data streams, and has been optimized for this use paradigm. Unfortunately, this
creates some problematic behaviors for an application such as Resonant Ele-
ment. When being used on an iOS-based mobile device, for example, the row
timings become unreliable if the device is “locked” or allowed to “sleep.” This is
a function of the fact that the devices attempt to save battery in these modes by
changing the management approach for available active CPU time. There is no
effective workaround for this shortcoming, which means Resonant Element can
only work correctly while the application is active and the phone is “awake,”
which is not ideal for some of the use cases (such as for use as a sleep or medita-
tion aid). Addressing this would require a re-architecture of the playback system
itself.

5.2 Repetition Without Order

Resonant Element’s use of an LRU cache for selecting generated sections that
have already been used does produce a certain degree of repetition. However,
subjectively this is not as effective as one might expect. In some cases, a single
generated pattern is repeated too many times consecutively, which can evoke
a feeling of the application being “stuck in a loop.” In contrast, sometimes the
system reuses patterns too infrequently, or with a degree of frequency that makes
the reuse unclear to the listener, which can evoke a sense that the generation
process is rudderless and overly chaotic. The underlying problem appears to be
that there is no larger constraining structure dictating the use of preexisting
sections. An earlier version of the system used a data structure called a “song
flow” to organize this kind of repetition[4], but it was removed during further
development. It may be necessary to revisit that approach.



Resonant Element: A Generator for Pop-Inspired Music 11
6 Conclusions and Future Directions

The Resonant Element music generation system is an effective engine for the
production of a continuous stream of musical output with reasonably good qual-
ity. The use of a combination of different stochastic models in a multi-layered
generative process provides a viable organizational structure with which to gen-
erate sophisticated musical patterns. Section-level histograms have been shown
to be a valuable and effective tool for creating the illusion of musical intention
and raising the perceived sense of cohesiveness of the output. The use of an
LRU cache to balance novelty and familiarity has shown promise, but has also
revealed the limitations of pattern reuse without a higher-level guiding system
of order and flow.

Future development work will focus on improving some of the identified lim-
itations of the approach taken. Specifically, the playback system itself requires
a deep re-imagining in order to achieve an acceptable level of reliable perfor-
mance on the target operating systems and devices. This is likely to involve
shifting from a proprietary note strip system to a more traditional MIDI stream
structure. Additionally, the organizational structure that guides the pattern of
repetition of generated sections needs to be revised to address the identified
shortcomings.

Development of an organized methodology for the evaluation of creative out-
puts from systems similar to Resonant Element appears to hold promise for
future research, as well. Though there has been some work in this area, such
as the creation of the Standardised Procedure for Evaluating Creative Based
Systems (SPECS)[13], this appears to be fertile ground for further exploration.

References

1. Wooller, R., Brown, A. R, et al. A framework for comparison of processes in algo-
rithmic music systems. In: Generative Arts Practice, pp. 109-124. Creativity and
Cognition Studios Press, Sydney (2005)

2. M. Zentner et al.: Emotions Evoked by the Sound of Music: Characterization,
Classification, and Measurement. American Psychological Association, Emotion,
8(4), 494-521 (2008)

3. TheoryTabs: Famous Chord Progressions, https://www.hooktheory.com/
theorytab/common-chord-progressions

4. Franklin, B.: SongSkill: A System for Continuous, Emotionally-Adaptive Music
Generation. In: Proceedings of Generative Art 2016, pp. 125-137.

5. Gabrielle, A., Stromboli, E.: Music and Emotion: Theory and Research. Oxford
University Press, Oxford (2001)

6. Vijayalakshmi, K., Sridhar, S., Khanwani, P.: Estimation of effects of alpha music
on EEG components by time and frequency domain analysis. In: 2010 International
Conference on Computer and Communication Engineering (ICCCE). IEEE (2010)

7. Haapakangas, A., Haka, M., Keskinen, E., Hongisto, V.: Effect of Speech Intelligi-
bility on Task Performance- An Experimental Laboratory Study. In: Performance:
9th International Congress on Noise as a Public Health Problem (ICBEN) (2008)



12

11.

12.

13.

B.T. Franklin

Huang, R., Shih, Y.: Effects of background music on concentration of workers.
Work 38, 383-387 (2011)
Parekh, R.: Principles of Multimedia. Tata McGraw-Hill, New York (2006)

. Pereira, C. S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., and Brattico,

E.: Music and Emotions in the Brain: Familiarity Matters. PLoS ONE 6(11). (2011)
Ariza, C.: The Interrogator as Critic: The Turing Test and the Evaluation of Gen-
erative Music Systems. Computer Music Journal 33(2), 48-70 (2009)

Loughran, R., O’Neill, M.: Limitations from Assumptions in Generative Music
Evaluation. Journal of Creative Music Systems, 2(1). (2017)

Jordanous, A.: A standardised procedure for evaluating creative systems: Compu-
tational creativity evaluation based on what it is to be creative. Cognitive Com-
putation, 4(3). (2012)



